

Group Signatures on Mobile Devices: Practical Experiences

Klaus Potzma^{der}, Johannes Winter, Daniel Hein, Christian Hanser,
Peter Teufl¹, Liquun Chen²

¹Institute for Applied Information
Processing and Communications,
Graz University of Technology,
Austria

²Hewlett-Packard Laboratories,
Bristol, UK

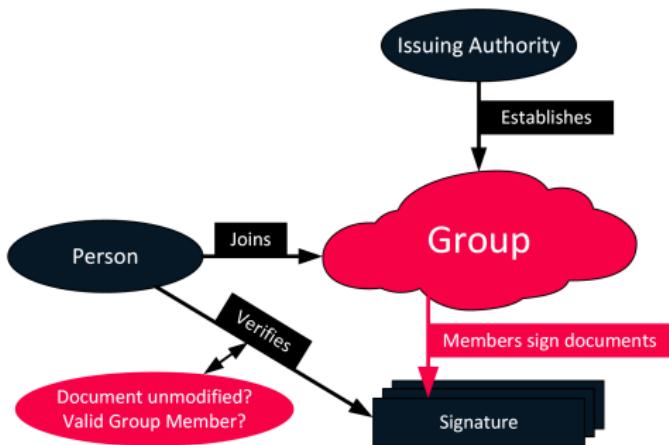
June 17, 2013

Agenda

- ▶ Group Signature Schemes
 - ▶ General Introduction
 - ▶ Scheme Capabilities
- ▶ Sample Use Case
- ▶ ISO 20008-2
- ▶ Implementation
- ▶ Results
- ▶ Conclusion

Group Signature Schemes (1)

- ▶ A crowd of people form a group
 - ▷ A company
 - ▷ A family
 - ▷ People having something in common
- ▶ Initiator as issuing authority
 - ▷ Adds new members
- ▶ Group members can sign documents
 - ▷ On behalf of the group
 - ▷ Without revealing the individual's identity
- ▶ Membership is verifiable


Group Signature Schemes (2)

- ▶ One public key for the whole group
- ▶ Private counterpart: Group Membership Issuing Key
 - ▷ Issuing authority
- ▶ Each participant possesses
 - ▷ A private key
 - ▷ A Membership Credential
 - ▶ Created by the issuing authority
 - ▶ During joining

Scheme Construction

- ▶ Five general processing steps
 - ▷ Group Setup/Establishment
 - ▷ Join
 - ▷ Sign
 - ▷ Verify
 - ▷ Revoke (details omitted)

Linking Capability

- ▶ Two signatures signed by the same person are connectable
 - ▷ Observer knows they belong to the same person
 - ▷ No (computationally feasible) ability to identify the particular person
- ▶ Might be an undesired “capability”
 - ▷ Everyone can link signatures

Opening Capability

- ▶ Separate authority
- ▶ Capable of opening signatures
- ▶ Reveals identity of signer

Sample Use Case

Electronic Payment

- ▶ Group: Clients of a mobile payment company
- ▶ Issuing authority: A server within that company
- ▶ Shops as verifiers
 - ▷ Clients sign purchase order
 - ▷ Shops verify and deliver if successful
- ▶ Mobile payment company:
 - ▷ Opens the signature and reveals the client's ID
 - ▷ Charges the client
- ▶ *Need to know*
 - ▷ Customer name and other attributes hidden
 - ▷ It's a valid signature, period.

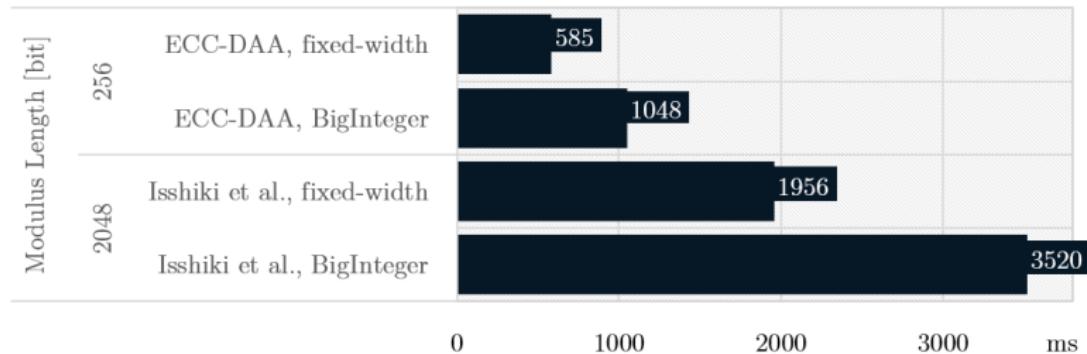
- ▶ Upcoming ISO standard for anonymous digital signatures using a group public key
- ▶ DIS (Draft International Standard) stage
- ▶ Targeted release date: May 2014

Contents

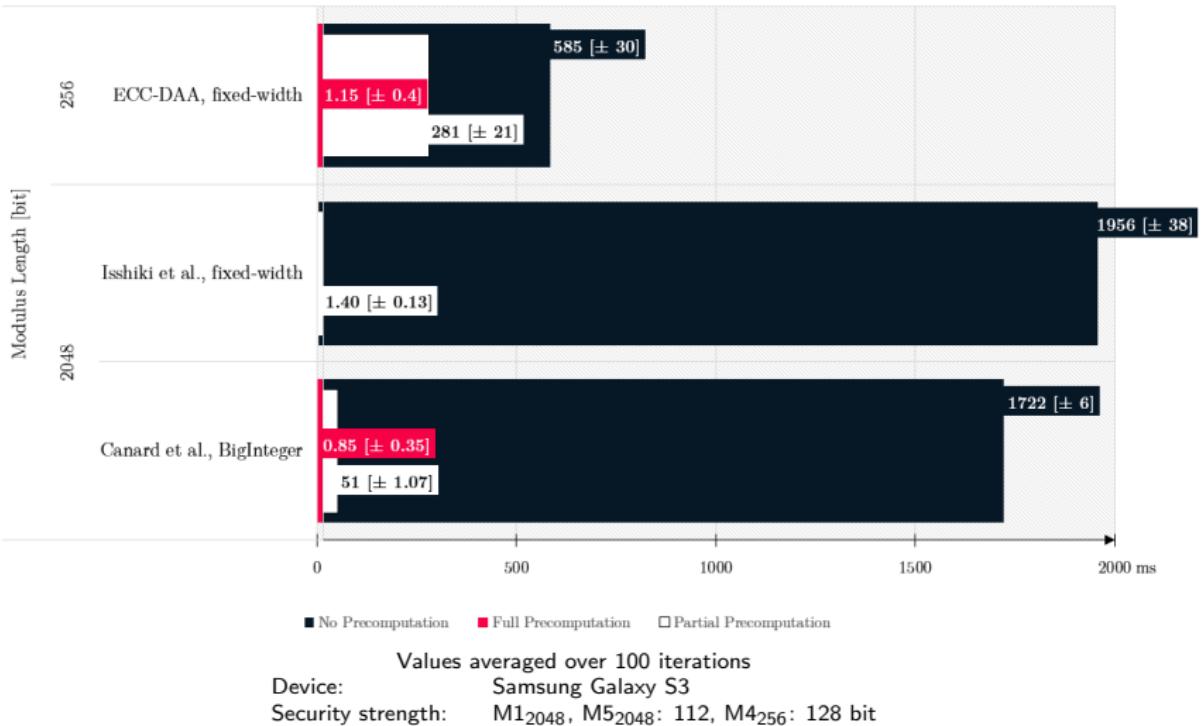
- ▶ 7 specified schemes (mechanisms)
- ▶ 4 with linking capability
- ▶ 2 with opening capability
- ▶ 1 supporting both

Implementation (1)

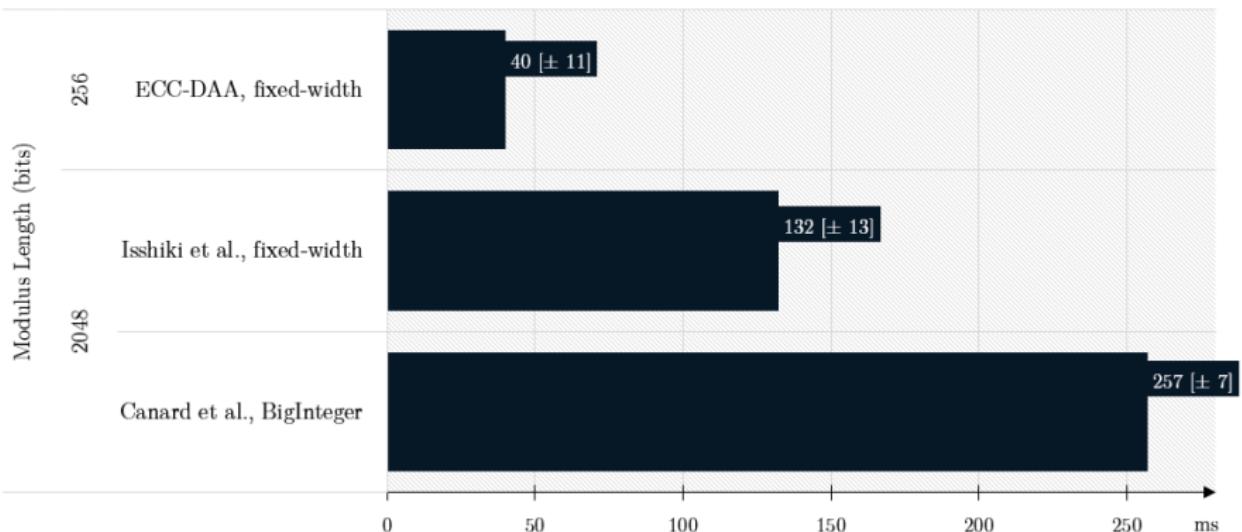
- ▶ Our goals
 - ▷ Are group signature schemes ready for mobile scenarios?
 - ▷ Are there any schemes suited better/worse for mobiles?
- ▶ 3/7 mechanisms implemented
- ▶ Mechanism 1 (Canard et al. [1])
 - ▷ RSA-based (List Signature Scheme)
 - ▷ Linking capability
- ▶ Mechanism 4 (Chen et al. [2])
 - ▷ ECC/Pairing based scheme (Direct Anonymous Attestation)
 - ▷ Linking capability
- ▶ Mechanism 5 (Isshiki et al. [3])
 - ▷ Uses RSA and ECC
 - ▷ Opening Capability


Implementation (2)

- ▶ Pure Java implementation
- ▶ Runs on JavaSE and Android
- ▶ Schemes embedded in common framework
- ▶ For ECC-DAA, the pairing implementation by Beuchat et al. [4] was ported from their C implementation
- ▶ Precomputation saves online signing times
 - ▶ Compute parts of the signature not depending on the message beforehand
 - ▶ Linkability: Two stages of precomputation


Implementation (3)

Signing without precomputation, avg. over 100 iterations



- ▶ Android-optimized fixed-width integer implementation
 - ▷ Significantly reduces garbage collector activity
 - ▷ All-the-same-length int arrays are easily reusable
 - ▷ Eliminates a lot of instantiation/collection cycles
- ▶ No issue in standard Java (faster, less aggressive GC)

Runtimes: Mobile Signing

Runtimes: Notebook Verification

Values averaged over 100 iterations
Device: Lenovo Thinkpad T420s
Security strength: $M1_{2048}$, $M5_{2048}$: 112, $M4_{256}$: 128 bit

Conclusion

- ▶ Evaluation of three group signature schemes on mobile devices
 - ▷ All of which use different cryptosystems
- ▶ Group Signatures considered ready for mobile environments
 - ▷ Application scenarios typically require fast signing
 - ▷ Acceptable timings using precomputation, even without native code
 - ▷ Significant drops in runtimes, depending on the age of the device
- ▶ Framework allows comparison regarding runtime, memory
 - ▷ Extendable with further schemes
- ▶ Source:
 - ▷ github.com/klapm/group-signature-scheme-eval

Group Signatures on Mobile Devices: Practical Experiences

Klaus Potzma¹, Johannes Winter, Daniel Hein, Christian Hanser, Peter Teufl¹,
Liqun Chen²

Thank you. Questions?

References

- [1] Canard, S., Schoenmakers, B., Stam, M., Traoré, J.: List Signature Schemes. *J. Discrete Applied Mathematics* 154 (2), 189–201 (2006)
- [2] Chen, L., Page, D., Smart, N.P.: On the Design and Implementation of an Efficient DAA Scheme. In: Gollmann, D., Lanet, J-L., Iguchi-Cartigny, J. (eds.) *CARDIS 2010*. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)
- [3] Isshiki, T., Mori, K., Sako, K., Teranishi, I., Yonezawa, S.: Using Group Signatures for Identity Management and its Implementation. In: *2nd ACM workshop on Digital Identity Management*, pp. 73–78. ACM Press, New York (2006)
- [4] Beuchat J.-L., González-Díaz J.E., Mitsunari, S., Okamoto, E., Rodríguez-Henríquez, F., Teruya, T.: High-Speed Software Implementation of the Optimal Ate Pairing over BarretoNaehrig Curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) *Pairing 2010*. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)